产品类别


    应用市场


首页>资源库>行业动态

The Essential Guide to Conformal Coating

 
With the increased popularity of miniaturized electronics and circuitry, conformal coating use has skyrocketed to solidify its relevance in a wealth of modern PCB-related applications . Choosing the ideal type of coating and application methods for your electronics is crucial. However, processing the vast amount of information online can often present a daunting task.
 
What is Conformal Coating
 
Conformal coating is a special polymeric film forming product that protects circuit boards, components, and other electronic devices from adverse environmental conditions. These coatings ‘conform’ to inherent irregularities in both the structure and environment of the PCB. They provide increased dielectric resistance, operational integrity, and protection from corrosive atmospheres, humidity, heat, fungus, and airborne contamination such as dirt and dust.
 
Traditional Conformal Coatings
 
What we call “traditional” conformal coatings are 1-part systems that have a resin base and can be diluted with either solvent or (in rare cases) water. Traditional coatings are semi-permeable, which is why they are not fully hermetic nor do they seal the coated electronics. They provide resistance to environmental exposure, which increases PCB durability while keeping application and repair processes in practice. However, they are NOT fully water-proof.
 
The following categories are based on the basic resin of each coating. The chemical composition of each conformal coating determines its major attributes and functions. Choosing the proper conformal coating for your application is determined by the operational requirements of your electronics.
 
•  Acrylic Resin (AR) – Acrylic conformal coating provides fair elasticity and general protection. Acrylic conformal coating is recognized for its high dielectric strength, and fair moisture and abrasion resistance. What generally distinguishes acrylic coating from other resins is its facility for removal. Acrylic coatings are easily and quickly removed by a variety of solvents, often without requiring agitation. This makes rework and even field repair very practical and economical. On the other hand, acrylic coatings do not protect against solvents and solvent vapors, which could result in less than ideal performance for an application that involves something like pumping equipment. Acrylic coatings can be considered basic, entry-level protection, because they are economical and protect against a broad-level of contamination. However, they are not the best-in-class for any characteristic except possibly dielectric strength.
 
•  Silicone Resin (SR) – Silicone conformal coating provides excellent protection in a very wide temperature range. SR provides good chemical resistance, moisture, and salt spray resistance, and is very flexible. Silicone conformal coating isn’t abrasion resistant because of its rubbery nature, but this property does make it resilient against vibrational stresses. Silicone coatings are commonly used in high-humidity environments. Special formulations that can coat LED lights without color shift or reduction of intensity are available, and make SR conformal coatings a popular choice for applications such as outdoor signs. Removal can be challenging, requiring specialized solvents, long soak time, and agitation from a brush or an ultrasonic bath.
 
•  Urethane (Polyurethane) Resin (UR) – Urethane conformal coating is known for its excellent moisture and chemical resistance. It is also very abrasion resistant. Combining those factors with its solvent resistance results in a conformal coating that is very difficult to remove. Like silicone, full removal generally requires special solvents, long soak time, and agitation with a brush or an ultrasonic bath. Urethane conformal coating is commonly specified for aerospace applications where exposure to fuel vapors is a common concern.
 
CURING METHODS
 
While the curing mechanism is not a primary criterion when selecting a coating, it has a direct impact on the type of application method that will be feasible, and the throughput that can be expected. Some mechanisms are relatively infallible, while others are very complex and leave room for application errors when used in an uncontrolled process.
 
•  Evaporative Curing Mechanism - The liquid carrier evaporates, leaving just the coating resin. Although very simple in theory, circuit boards usually need to be dipped at least two times to build up an adequate coating on the edges of their components. Whether the liquid carrier is solvent or water‐based, humidity affects application parameters. Solvent systems tend to be easy to process, and provide consistent coverage due to good wetting, and fast cure times. However, solvents are often flammable, so adequate ventilation and fume extraction methods are required. Using water as a carrier can eliminate the flammability concern, although these coatings tend to take much longer to cure, and can be very sensitive to ambient humidity.
•  Moisture Curing - Primarily found in silicone and some urethane systems. These materials will react with ambient moisture to form the polymer coating. This type of curing mechanism is often coupled with an evaporative curing. As carrier solvents evaporate, moisture reacts with resin to initiate final curing.
•  Heat Curing - Heat curing mechanisms can be used with one or multicomponent systems, as a secondary curing mechanism for UV curing, moisture curing, or evaporative curing. The addition of heat will cause the system to polymerize or speed the curing of the system. This can be advantageous when one curing mechanism is insufficient to gain the curing properties required or expected. However, thermal sensitivity of circuit boards and components must be taken into consideration when curing at high temperatures.
•  UV Curing - Coatings that are cured using ultraviolet light offer very fast throughputs. They are 100% solid systems with no carrier solvents. UV curing occurs in the production line, so a secondary curing mechanism is needed under the components and in shadowy areas. UV cured coatings are more difficult to repair and rework and require UV curing equipment and UV radiation protection for workers.
 
HOW TO REMOVAL CONFORMAL COATING
 
On occasion, it is necessary to remove a conformal coating from the circuit board to replace damaged components or perform other reworking procedures. The methods and materials used to remove coatings are determined by both the coating resins and the size of the area, which can impact the time required for removal.
 
The basic methods as cited by IPC are:
 
•  Solvent Removal – Most conformal coatings are susceptible to solvent removal; however, it must be determined if the solvent will damage parts or components on the circuit board. Acrylics are the most sensitive to solvents hence their easy removal. On the other hand, epoxies, urethanes, and silicones are the least sensitive. Parylene cannot be removed with a solvent.
•  Peeling – Some conformal coatings can be peeled from the circuit board. This is mainly a characteristic of some silicone conformal coatings and some flexible conformal coatings.
•  Thermal/Burn‐through – A common technique of coating removal is to simply burn through the coating with a soldering iron as the board is reworked. This method works well with most forms of conformal coatings.
•  Microblasting – Micro blasting removes the conformal coating by using a concentrated mix of soft abrasive and compressed air to abrade the coating. The process can be used to remove small areas of the conformal coating. It is most commonly used when removing Parylene and epoxy coatings.
•  Grinding/Scraping – In this method, the conformal coating is removed by abrading the circuit board. This method is more effective with harder conformal coatings, such as parylene, epoxy and polyurethane. This method is only used as a method of last resort, as serious damage can be incurred.
 
If all you are doing is replacing a component or working on an isolated area, it is common to simply burn through the coating with a soldering iron. In cases when this is aesthetically unacceptable, contamination is a concern, or components are densely spaced, coating removers are available in pen packaging.
 
Link:https://www.techspray.com/the-essential-guide-to-conformal-coating